This JavaScript E-labs learning object is intended for finding the optimal solution, and post-optimality analysis of small-size linear programs. Finally, we demonstrated how to call out a few specific summary output quantities of interest and to make plots of those quantities against the changes in the input parameters. 1995;88(11):620624. For example, consider, Influencing variables here are all identified risk in the risk register and cost baseline is a Dependent variable of a project. To enable this, ResFrac's sensitivity analysis tools are built around dimension reduction of the input space via the concept of 'parameter groups.'. Conclusions: Sensitivity analysis provides users of mathematical and simulation models with tools to appreciate the dependency of the model output from model input and to investigate how important is each model input in determining its output. The number of parameter groups defines the dimension of Z, with each row of z representing the position of the point along the dimension of the corresponding parameter group. Sensitivity Analysis is a very useful tool albeit, with some shortcomings. Representing a single modeling idea, such as changing the cluster spacing, often entails creating ResFrac simulations that differ from each other for several simulation input parameters. BMC Med. It requires data, some understanding of analysis, and the specific knowledge that sensitivity analysis isn't a magic . Material A: $1000 ($750 - $1500) Material B: $10,000 ($9950 - $10, 100) Total Base Cost is $11, 000. Jafari M, Dastgheib SA, Ferdosian F, Mirjalili H, Aarafi H, Noorishadkam M, Mazaheri M, Neamatzadeh H. Hematol Transfus Cell Ther. Only the three most preferred classes were altered for each criteria, since only the best locations for a house are of interest. The sensitivity analysis methodology consists of three steps. There are different methods to carry out the sensitivity analysis: Modeling and simulation techniques Scenario management tools through Microsoft excel There are mainly two approaches to analyzing sensitivity: Local Sensitivity Analysis Global Sensitivity Analysis Local sensitivity analysis is derivative based (numerical or analytical). The sales manager has more incentive to perform, and the added commission may be an excellent inducement. Required fields are marked *. A target function is a summary value from one column in the simulation results sim_track_xxxx.csv file. One way to create a sensitivity analysis is to aggregate variables into three scenarios, which are the worst case, most likely case, and best case. The figure indicates that the usage of Cochranes tool is increasing, while the use of Jadad and Oxford tool is decreasing over time. Sensitivity analysis is a quick and easy way to assess the magnitude of response variation caused by the variation of the parameters, and it also identifies key drivers of response variation. Over the coming months, we will add refinements to the sensitivity analysis features, including additional sampling schemes, target functions and plotting types. Examples of Sensitivity Analysis The probability of occurrence for the variables used in these three cases clusters the highest probability variables in the most likely case. It takes into account two-variable at a time, they are Influencing variable and Dependent variable. However, it is unknown which tools do SR authors use for assessing quality/RoB, and how they set threshold for quality/RoB in sensitivity analyses. Your email address will not be published. Here (Pareto Diagram) we will plot the Influencing variable (Risk) on X-axis and Dependent variable (Cost) on Y-axis. One way to create a sensitivity analysis is to aggregate variables into three scenarios, which are the worst case, most likely case, and best case. Background: The most commonly reported tools for assessing quality/RoB in the studies were the Cochrane tool for risk of bias assessment (N = 251; 37%) and Jadad scale (N = 99; 15%). Unlike a sandbox workflow, in a sensitivity analysis workflow, you dont manually create simulations one at a time; instead, simulations are created automatically based on what we specify when setting up the sensitivity analysis. A spider plot, intended to be used along with one-at-a-time sampling, plots target function values on the vertical axis and parameter group values on the horizontal axis, for points that have at most one non-zero parameter group interpolator value (e.g., in a study with three parameter groups, the point [0, 0, 0.5] would be included in the spider plot because only one of the parameter group interpolators has non-zero value, while the point [0, 0.5, 0.5] would not be included because more than one interpolator has non-zero value). Sensitivity Analysis is used to know and ascertain the impact of a change in the outcome with the inputs' various projected changes. One-Variable Data Table A crucial element in the systematic review (SR) methodology is the appraisal of included primary studies, using tools for assessment of methodological quality or risk of bias (RoB). In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. The higher the impact the bigger the size of the bar. 2022 Nov;26(11):2210-2220. doi: 10.1007/s10995-022-03467-6. The probability of occurrence for the variables used in these three cases clusters the highest probability variables in the most likely case. It's a way to determine what different values for an independent variable can do to affect a specific dependent variable, given a . What this analysis does not reveal is how an individual will behave. Like a sandbox workflow, a sensitivity analysis workflow at its core consists of a group of simulations. The decision maker can then evaluate the probability of the variables experiencing significant changes. The sensitivity analysis is used to test how robust the outcome of a cost-benefit analysis is when certain situations or some of the numbers in the analysis change. Epub 2020 Aug 18. sensitivity analysis free download. ResFrac updates > Introducing ResFracs Sensitivity Analysis Tools. and transmitted securely. Any simulations that we choose this for will work just like simulations that we ran manually (i.e., we will have full 3D results viewable in the visualization tool for these simulations). The sim_track file contains time-series data for a variety of simulation outputs. The three most commonly used quality/risk of bias tools in articles analyzed within this study were Cochrane, Jadad, and Oxford tools. Before you click OK, select Sensitivity from the Reports section. Abstract. Select the Range E2:K8, and click Data > What-If Analysis > Data Table. Other Sensitivity Analysis Tools . The main steps are as follows: (1) A sensitivity analysis workflow is a new type of workflow that is a peer to the sandbox workflow that is used for manually created simulations. Sensitivity analysis is the quantitative risk assessment of how changes in a specific model variable impacts the output of the model. You can speed up the evaluation using parallel computing or fast restart. A sensitivity analysis is also known as a what-if analysis. Is the evaluation of risk of bias in periodontology and implant dentistry comprehensive? Sensitivity analysis in observational research: introducing the E-value. Methods: A sensitivity analysis is an analysis we use to determine how various sources or input values of an individual variable affect a specific dependent variable under an allotted group of theories or assumptions. I would especially like to acknowledge our pre-release users for their comments and ideas. Requirements: NumPy, SciPy, matplotlib, pandas, Python 3 (from SALib v1.2 onwards SALib does not officially support Python 2 . A crucial element in the systematic review (SR) methodology is the appraisal of included primary studies, using tools for assessment of methodological quality or risk of bias (RoB). To enable this, ResFracs sensitivity analysis tools are built around dimension reduction of the input space via the concept of parameter groups. One parameter group, corresponding to a single modeling idea, represents a collection of simulation input parameters that vary together. On the other hand, sensitivity analysis is used in establishing the level of uncertainty in an output that is numerical or non-numerical by apportioning different units of uncertainties in the inputs used to generate the output. A systematic review. It implements several methods, including the Elementary Effects Test, Regional Sensitivity Analysis, Variance-Based (Sobol') sensitivity analysis and the novel PAWN method.. It is also known as what-if analysis or simulation analysis. This was a methodological study. government site. Please enable it to take advantage of the complete set of features! The sensitivity analysis would best serve as an additional exploratory tool for analyzing data. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019) London: Cochrane; 2019. Optimistic estimate - Pessimistic estimate - most likely estimate. Take a look at our Privacy Policy for more info. CAPM (Certified Associate in Project Management), PRINCE2 Project Management & Certification, MONITORING & CONTROLLING PMP Process Groups, WHAT-IF SCENARIO ANALYSIS PMP Tools and Techniques, STAKEHOLDER ENGAGEMENT ASSESSMENT MATRIX PMP Tools and Techniques, STAKEHOLDER ANALYSIS PMP Tools and Techniques, RISK DATA QUALITY ASSESSMENT PMP Tools and Techniques, REGRESSION ANALYSIS PMP Tools and Techniques, PROCESS ANALYSIS PMP Tools and Techniques, MAKE-OR-BUY ANALYSIS PMP Tools and Techniques, DOCUMENT ANALYSIS PMP Tools and Techniques, COST-BENEFIT ANALYSIS PMP Tools and Techniques, COST OF QUALITY PMP Tools and Techniques, ASSUMPTION AND CONSTRAINT ANALYSIS PMP Tools and Techniques, STAKEHOLDER MANAGEMENT PMP Knowledge Areas (PMBOK), Asana How This Simple Tool Can Help Project Management and Boost Your Productivity. Use Sensitivity Analysis to evaluate how the parameters and states of a Simulink model influence the model output or model design requirements. It is often convenient to start with a spider plot to identify which parameter groups are most impactful on a particular target function. The tools help users to create and run batches of simulations that vary systematically, and then help users interpret the results from these batches of simulations. It involves speculation on alternative scenarios and estimating the accuracy of data, e.g. Installation Instructions: Windows. Analysis of different risk screening tools in combination with the ESPEN and GLIM diagnostic algorithms in liver cirrhosis, short bowel syndrome and chronic pancreatitis . It provides the optimal value and the optimal strategy for the decision variables. Implements a suite of sensitivity analysis tools that extends the traditional omitted variable bias framework and makes it easier to understand the impact of omitted variables in regression models, as discussed in Cinelli, C. and Hazlett, C. (2020), "Making Sense of Sensitivity: Extending Omitted Variable Bias." Journal of the Royal Statistical Society, Series B (Statistical Methodology) <doi . Together, these graphs and data provide communication tools and hard numbers to . Would you like email updates of new search results? Modeling tools like ResFrac are all about doing what if analyses on the computer instead of in the field. The simulations run for the study will appear in the list of simulations on the workflow overview page, and we can monitor their progress in the same way as for manually created simulations. Most solvers can perform sensitivity analysis. specifically for you. Or a user might vary design parameters such as perforation cluster spacing while trying out ideas to increase production. (1.e.) The Flexible Retirement Planner's Sensitivity Analysis tool helps you explore how sensitive or vulnerable your retirement plan may be to variations in input parameters, such as rate of return or annual retirement spending. Despite the fact that we are talking about random variations, deterministic techniques only consider a specific value of variation and calculate the system's output. Sensitivity analysis Sensitivity analysis means varying the inputs to a model to see how the results change Sensitivity analysis is a very important component of exploratory use of models model is not regarded as "correct" sensitivity analysis helps user explore implications of alternate assumptions human computer interface for . -. Sensitivity analysis is a technique that helps us analyze how a change in an independent input variable affects the dependent target variable under a defined set of assumptions. Download SolverSensitivity.zip. Any simulation can be used as a base simulation for a new sensitivity analysis workflow by choosing the Create Sensitivity Analysis menu item in a simulation table. Right-click on SolverSensitivity.xlam and click the Properties option. 2021 Oct 4;43(5):544-550. doi: 10.1093/ejo/cjaa074. Epub 2021 Dec 15. 2015 May;42(5):488-94. doi: 10.1111/jcpe.12394. The tool can be launched by clicking the Sensitivity Analysis button on the main planner window. Available from, Moja LP, Telaro E, D'Amico R, Moschetti I, Coe L, Liberati A. which is accomplished through sensitivity analysis based tools like Monte Carlo analysis. Keywords: This is another important use of optimization, which is to gain a deeper understanding of the problem. For example, the company will make more at $6,000,000 in sales than at $3,000,000 in sales, even if the sales manager is paid twice as much. The burden of household out-of-pocket healthcare expenditures in Ethiopia: a systematic review and meta-analysis. His PMP Math formulas are used by thousands of PMP aspirants and project managers worldwide in more than 44 countries and counting. Epub 2022 Aug 30. Two-Variable Data Table (2) Goal Seek Data Tables 1. 2022 Aug 2;19(15):9479. doi: 10.3390/ijerph19159479. One-Variable Data Table 2. For a chosen simulation with selected outputs, the relative impact of selected - or all - input parameters on the PK parameters of those selected output curves is calculated and displayed. The Sensitivity Analysis. (2008) ISBN:9780470725177). The following are used most often (1) Data Table 1. R Package for the E-Value. Sensitivity Analysis for Unmeasured Confounding (E-Values) VanderWeele, T.J. and Ding, P. (2017). PMC The technique is used to evaluate alternative business decisions, employing different assumptions about variables. Overview. (2.a.) 1 / 1Select the Performance Domains(s) Change Quality Stakeholders Planning Team Email Your score is LinkedIn Facebook Twitter VKontakte 0%div#ays-quiz-container-2 * { box-sizing: border-box; } /* Styles for Internet Explorer start */ #ays-quiz-container-2 #ays_finish_quiz_2 { } /* Styles for Quiz container */ #ays-quiz-container-2{ min-height: 350px; width:400px; background-color:#ffffff; background-position:center center;border-radius:0px;box-shadow: 0px 0px 15px 1px rgba(0,0,0,0.4);border: none;} /* Styles for questions */ #ays-quiz-container-2 #ays_finish_quiz_2 div.step { min-height: 350px; } /* Styles for text inside quiz container */ #ays-quiz-container-2 .ays-start-page *:not(input), #ays-quiz-container-2 .ays_question_hint, #ays-quiz-container-2 label[for^="ays-answer-"], #ays-quiz-container-2 #ays_finish_quiz_2 p, #ays-quiz-container-2 #ays_finish_quiz_2 .ays-fs-title, #ays-quiz-container-2 .ays-fs-subtitle, #ays-quiz-container-2 .logged_in_message, #ays-quiz-container-2 .ays_score_message, #ays-quiz-container-2 .ays_message{ color: #515151; outline: none; } #ays-quiz-container-2 .ays-quiz-password-message-box, #ays-quiz-container-2 .ays-quiz-question-note-message-box, #ays-quiz-container-2 .ays_quiz_question, #ays-quiz-container-2 .ays_quiz_question *:not([class^='enlighter']) { color: #515151; } #ays-quiz-container-2 textarea, #ays-quiz-container-2 input::first-letter, #ays-quiz-container-2 select::first-letter, #ays-quiz-container-2 option::first-letter { color: initial !important; } #ays-quiz-container-2 p::first-letter:not(.ays_no_questions_message) { color: #515151 !important; background-color: transparent !important; font-size: inherit !important; font-weight: inherit !important; float: none !important; line-height: inherit !important; margin: 0 !important; padding: 0 !important; } #ays-quiz-container-2 .select2-container, #ays-quiz-container-2 .ays-field * { font-size: 15px !important; } #ays-quiz-container-2 .ays_quiz_question p { font-size: 16px; } #ays-quiz-container-2 .ays-fs-subtitle p { text-align: center ; } #ays-quiz-container-2 .ays_quiz_question { text-align: center ; margin-bottom: 10px; } #ays-quiz-container-2 .ays_quiz_question pre { max-width: 100%; white-space: break-spaces; } #ays-quiz-container-2 .ays-quiz-timer p { font-size: 16px; } #ays-quiz-container-2 section.ays_quiz_redirection_timer_container hr, #ays-quiz-container-2 section.ays_quiz_timer_container hr { margin: 0; } #ays-quiz-container-2 section.ays_quiz_timer_container.ays_quiz_timer_red_warning .ays-quiz-timer { color: red; } #ays-quiz-container-2 .ays_thank_you_fs p { text-align: center; } #ays-quiz-container-2 input[type='button'], #ays-quiz-container-2 input[type='submit'] { color: #515151 !important; outline: none; } #ays-quiz-container-2 .information_form input[type='text'], #ays-quiz-container-2 .information_form input[type='url'], #ays-quiz-container-2 .information_form input[type='number'], #ays-quiz-container-2 .information_form input[type='email'], #ays-quiz-container-2 .information_form input[type='checkbox'], #ays-quiz-container-2 .information_form input[type='tel'], #ays-quiz-container-2 .information_form textarea, #ays-quiz-container-2 .information_form select, #ays-quiz-container-2 .information_form option { color: initial !important; outline: none; background-image: unset; } #ays-quiz-container-2 .wrong_answer_text{ color:#ff4d4d; } #ays-quiz-container-2 .right_answer_text{ color:#33cc33; } #ays-quiz-container-2 .ays_cb_and_a, #ays-quiz-container-2 .ays_cb_and_a * { color: rgb(81,81,81); text-align: center; } /* Quiz textarea height */ #ays-quiz-container-2 textarea { height: 100px; min-height: 100px; } /* Quiz rate and passed users count */ #ays-quiz-container-2 .ays_quizn_ancnoxneri_qanak, #ays-quiz-container-2 .ays_quiz_rete_avg { color:#ffffff !important; background-color:#515151; } #ays-quiz-container-2 .ays-questions-container > .ays_quizn_ancnoxneri_qanak { padding: 5px 20px; } #ays-quiz-container-2 div.for_quiz_rate.ui.star.rating .icon { color: rgba(81,81,81,0.35); } #ays-quiz-container-2 .ays_quiz_rete_avg div.for_quiz_rate_avg.ui.star.rating .icon { color: rgba(255,255,255,0.5); } #ays-quiz-container-2 .ays_quiz_rete .ays-quiz-rate-link-box .ays-quiz-rate-link { color: #515151; } /* Loaders */ #ays-quiz-container-2 div.lds-spinner, #ays-quiz-container-2 div.lds-spinner2 { color: #515151; } #ays-quiz-container-2 div.lds-spinner div:after, #ays-quiz-container-2 div.lds-spinner2 div:after { background-color: #515151; } #ays-quiz-container-2 .lds-circle, #ays-quiz-container-2 .lds-facebook div, #ays-quiz-container-2 .lds-ellipsis div{ background: #515151; } #ays-quiz-container-2 .lds-ripple div{ border-color: #515151; } #ays-quiz-container-2 .lds-dual-ring::after, #ays-quiz-container-2 .lds-hourglass::after{ border-color: #515151 transparent #515151 transparent; } /* Stars */ #ays-quiz-container-2 .ui.rating .icon, #ays-quiz-container-2 .ui.rating .icon:before { font-family: Rating !important; } /* Progress bars */ #ays-quiz-container-2 #ays_finish_quiz_2 .ays-progress { border-color: rgba(81,81,81,0.8); } #ays-quiz-container-2 #ays_finish_quiz_2 .ays-progress-bg { background-color: rgba(81,81,81,0.3); } #ays-quiz-container-2 .ays-progress-value { color: #515151; text-align: center; } #ays-quiz-container-2 .ays-progress-bar { background-color: #27ae60; } #ays-quiz-container-2 .ays-question-counter .ays-live-bar-wrap { direction:ltr !important; } #ays-quiz-container-2 .ays-live-bar-fill{ color: #515151; border-bottom: 2px solid rgba(81,81,81,0.8); text-shadow: 0px 0px 5px #ffffff; } #ays-quiz-container-2 .ays-live-bar-fill.ays-live-fourth, #ays-quiz-container-2 .ays-live-bar-fill.ays-live-third, #ays-quiz-container-2 .ays-live-bar-fill.ays-live-second { text-shadow: unset; } #ays-quiz-container-2 .ays-live-bar-percent{ display:none; } #ays-quiz-container-2 #ays_finish_quiz_2 .ays_average { text-align: center; } /* Music, Sound */ #ays-quiz-container-2 .ays_music_sound { color:rgb(81,81,81); } /* Dropdown questions scroll bar */ #ays-quiz-container-2 blockquote { border-left-color: #515151 !important; } /* Quiz Password */ #ays-quiz-container-2 .ays-start-page > input[id^='ays_quiz_password_val_'], #ays-quiz-container-2 .ays-quiz-password-toggle-visibility-box { width: 100%; } /* Question hint */ #ays-quiz-container-2 .ays_question_hint_container .ays_question_hint_text { background-color:#ffffff; box-shadow: 0 0 15px 3px rgba(0,0,0,0.6); max-width: 270px; } #ays-quiz-container-2 .ays_question_hint_container .ays_question_hint_text p { max-width: unset; } #ays-quiz-container-2 .ays_questions_hint_max_width_class { max-width: 80%; } /* Information form */ #ays-quiz-container-2 .ays-form-title{ color:rgb(81,81,81); } /* Quiz timer */ #ays-quiz-container-2 div.ays-quiz-redirection-timer, #ays-quiz-container-2 div.ays-quiz-timer{ color: #515151; text-align: center; } #ays-quiz-container-2 div.ays-quiz-timer.ays-quiz-message-before-timer:before { font-weight: 500; } /* Quiz title / transformation */ #ays-quiz-container-2 .ays-fs-title{ text-transform: uppercase; font-size: 21px; text-align: center; text-shadow: none; } /* Quiz buttons */ #ays-quiz-container-2 .ays_arrow { color:#515151!important; } #ays-quiz-container-2 input#ays-submit, #ays-quiz-container-2 #ays_finish_quiz_2 .action-button, div#ays-quiz-container-2 #ays_finish_quiz_2 .action-button.ays_restart_button { background: none; background-color: #27ae60; color:#515151; font-size: 17px; padding: 10px 20px; border-radius: 3px; height: auto; letter-spacing: 0; box-shadow: unset; } #ays-quiz-container-2 input#ays-submit, #ays-quiz-container-2 #ays_finish_quiz_2 input.action-button { } #ays-quiz-container-2 #ays_finish_quiz_2 .action-button.ays_check_answer { padding: 5px 10px; font-size: 17px !important; } #ays-quiz-container-2 #ays_finish_quiz_2 .action-button.ays_restart_button { white-space: nowrap; padding: 5px 10px; white-space: normal; } #ays-quiz-container-2 input#ays-submit:hover, #ays-quiz-container-2 input#ays-submit:focus, #ays-quiz-container-2 #ays_finish_quiz_2 .action-button:hover, #ays-quiz-container-2 #ays_finish_quiz_2 .action-button:focus { background: none; box-shadow: 0 0 0 2px #515151; background-color: #27ae60; } #ays-quiz-container-2 .ays_restart_button { color: #515151; } #ays-quiz-container-2 .ays_restart_button_p, #ays-quiz-container-2 .ays_buttons_div { justify-content: center; } #ays-quiz-container-2 .ays_finish.action-button{ margin: 10px 5px; } #ays-quiz-container-2 .ays-share-btn.ays-share-btn-branded { color: #fff; } /* Question answers */ #ays-quiz-container-2 .ays-field { border-color: #444; border-style: solid; border-width: 1px; box-shadow: none; } /* Answer maximum length of a text field */ #ays-quiz-container-2 .ays_quiz_question_text_message{ color: #515151; text-align: left; font-size: 12px; } div#ays-quiz-container-2 div.ays_quiz_question_text_error_message { color: #ff0000; } #ays-quiz-container-2 .ays-quiz-answers .ays-field:hover{ opacity: 1; } #ays-quiz-container-2 #ays_finish_quiz_2 .ays-field { margin-bottom: 10px; } #ays-quiz-container-2 #ays_finish_quiz_2 .ays-field.ays_grid_view_item { width: calc(50% - 5px); } #ays-quiz-container-2 #ays_finish_quiz_2 .ays-field.ays_grid_view_item:nth-child(odd) { margin-right: 5px; } #ays-quiz-container-2 #ays_finish_quiz_2 .ays-field input:checked+label:before { border-color: #27ae60; background: #27ae60; background-clip: content-box; } #ays-quiz-container-2 .ays-quiz-answers div.ays-text-right-answer { color: #515151; } /* Questions answer image */ #ays-quiz-container-2 .ays-answer-image { width:50%; } /* Questions answer right/wrong icons */ #ays-quiz-container-2 .ays-field input~label.answered.correct:after{ content: url('https://pmp-tools.com/wp-content/plugins/quiz-maker/public/images/correct.png'); } #ays-quiz-container-2 .ays-field input~label.answered.wrong:after{ content: url('https://pmp-tools.com/wp-content/plugins/quiz-maker/public/images/wrong.png'); } /* Dropdown questions */ #ays-quiz-container-2 #ays_finish_quiz_2 .ays-field .select2-container--default .select2-selection--single { border-bottom: 2px solid #27ae60; background-color: #27ae60; } #ays-quiz-container-2 .ays-field .select2-container--default .select2-selection--single .select2-selection__placeholder, #ays-quiz-container-2 .ays-field .select2-container--default .select2-selection--single .select2-selection__rendered, #ays-quiz-container-2 .ays-field .select2-container--default .select2-selection--single .select2-selection__arrow { color: #aeaeae; } #ays-quiz-container-2 .select2-container--default .select2-search--dropdown .select2-search__field:focus, #ays-quiz-container-2 .select2-container--default .select2-search--dropdown .select2-search__field { outline: unset; padding: 0.75rem; } #ays-quiz-container-2 .ays-field .select2-container--default .select2-selection--single .select2-selection__rendered, #ays-quiz-container-2 .select2-container--default .select2-results__option--highlighted[aria-selected] { background-color: #27ae60; } #ays-quiz-container-2 .ays-field .select2-container--default, #ays-quiz-container-2 .ays-field .select2-container--default .selection, #ays-quiz-container-2 .ays-field .select2-container--default .dropdown-wrapper, #ays-quiz-container-2 .ays-field .select2-container--default .select2-selection--single .select2-selection__rendered, #ays-quiz-container-2 .ays-field .select2-container--default .select2-selection--single .select2-selection__rendered .select2-selection__placeholder, #ays-quiz-container-2 .ays-field .select2-container--default .select2-selection--single .select2-selection__arrow, #ays-quiz-container-2 .ays-field .select2-container--default .select2-selection--single .select2-selection__arrow b[role='presentation'] { font-size: 16px !important; } #ays-quiz-container-2 .select2-container--default .select2-results__option { padding: 6px; } /* Dropdown questions scroll bar */ #ays-quiz-container-2 .select2-results__options::-webkit-scrollbar { width: 7px; } #ays-quiz-container-2 .select2-results__options::-webkit-scrollbar-track { background-color: rgba(255,255,255,0.35); } #ays-quiz-container-2 .select2-results__options::-webkit-scrollbar-thumb { transition: .3s ease-in-out; background-color: rgba(81,81,81,0.55); } #ays-quiz-container-2 .select2-results__options::-webkit-scrollbar-thumb:hover { transition: .3s ease-in-out; background-color: rgba(81,81,81,0.85); } /* Audio / Video */ #ays-quiz-container-2 .mejs-container .mejs-time{ box-sizing: unset; } #ays-quiz-container-2 .mejs-container .mejs-time-rail { padding-top: 15px; } #ays-quiz-container-2 .mejs-container .mejs-mediaelement video { margin: 0; } /* Limitation */ #ays-quiz-container-2 .ays-quiz-limitation-count-of-takers { padding: 50px; } #ays-quiz-container-2 div.ays-quiz-results-toggle-block span.ays-show-res-toggle.ays-res-toggle-show, #ays-quiz-container-2 div.ays-quiz-results-toggle-block span.ays-show-res-toggle.ays-res-toggle-hide{ color: #515151; } #ays-quiz-container-2 div.ays-quiz-results-toggle-block input:checked + label.ays_switch_toggle { border: 1px solid #515151; } #ays-quiz-container-2 div.ays-quiz-results-toggle-block input:checked + label.ays_switch_toggle { border: 1px solid #515151; } #ays-quiz-container-2 div.ays-quiz-results-toggle-block input:checked + label.ays_switch_toggle:after{ background: #515151; } #ays-quiz-container-2.ays_quiz_elegant_dark div.ays-quiz-results-toggle-block input:checked + label.ays_switch_toggle:after, #ays-quiz-container-2.ays_quiz_rect_dark div.ays-quiz-results-toggle-block input:checked + label.ays_switch_toggle:after{ background: #000; } /* Hestia theme (Version: 3.0.16) | Start */ #ays-quiz-container-2 .mejs-container .mejs-inner .mejs-controls .mejs-button > button:hover, #ays-quiz-container-2 .mejs-container .mejs-inner .mejs-controls .mejs-button > button { box-shadow: unset; background-color: transparent; } #ays-quiz-container-2 .mejs-container .mejs-inner .mejs-controls .mejs-button > button { margin: 10px 6px; } /* Hestia theme (Version: 3.0.16) | End */ /* Go theme (Version: 1.4.3) | Start */ #ays-quiz-container-2 label[for^='ays-answer']:before, #ays-quiz-container-2 label[for^='ays-answer']:before { -webkit-mask-image: unset; mask-image: unset; } #ays-quiz-container-2.ays_quiz_classic_light .ays-field input:checked+label.answered.correct:before, #ays-quiz-container-2.ays_quiz_classic_dark .ays-field input:checked+label.answered.correct:before { background-color: #27ae60 !important; } /* Go theme (Version: 1.4.3) | End */ #ays-quiz-container-2 .ays_quiz_results fieldset.ays_fieldset .ays_quiz_question .wp-video { width: 100% !important; max-width: 100%; } /* Classic Dark / Classic Light */ /* Dropdown questions right/wrong styles */ #ays-quiz-container-2.ays_quiz_classic_dark .correct_div, #ays-quiz-container-2.ays_quiz_classic_light .correct_div{ border-color:green !important; opacity: 1 !important; background-color: rgba(39,174,96,0.4) !important; } #ays-quiz-container-2.ays_quiz_classic_dark .correct_div .selected-field, #ays-quiz-container-2.ays_quiz_classic_light .correct_div .selected-field { padding: 0px 10px 0px 10px; color: green !important; } #ays-quiz-container-2.ays_quiz_classic_dark .wrong_div, #ays-quiz-container-2.ays_quiz_classic_light .wrong_div{ border-color:red !important; opacity: 1 !important; background-color: rgba(243,134,129,0.4) !important; } #ays-quiz-container-2.ays_quiz_classic_dark .ays-field, #ays-quiz-container-2.ays_quiz_classic_light .ays-field { text-align: left; /*margin-bottom: 10px;*/ padding: 0; transition: .3s ease-in-out; } #ays-quiz-container-2 .ays-quiz-close-full-screen { fill: #515151; } #ays-quiz-container-2 .ays-quiz-open-full-screen { fill: #515151; } @media screen and (max-width: 768px){ #ays-quiz-container-2{ max-width: 100%; } #ays-quiz-container-2 .ays_quiz_question p { font-size: 16px; } #ays-quiz-container-2 .select2-container, #ays-quiz-container-2 .ays-field * { font-size: 15px !important; } div#ays-quiz-container-2 input#ays-submit, div#ays-quiz-container-2 #ays_finish_quiz_2 .action-button, div#ays-quiz-container-2 #ays_finish_quiz_2 .action-button.ays_restart_button { font-size: 17px; } /* Quiz title / mobile font size */ div#ays-quiz-container-2 .ays-fs-title { font-size: 21px; } } /* Custom css styles */ /* RTL direction styles */#ays-quiz-container-2 p { margin: 0.625em; } #ays-quiz-container-2 .ays-field.checked_answer_div input:checked+label { background-color: rgba(39,174,96,0.6); } #ays-quiz-container-2.ays_quiz_classic_light .enable_correction .ays-field.checked_answer_div input:checked+label, #ays-quiz-container-2.ays_quiz_classic_dark .enable_correction .ays-field.checked_answer_div input:checked+label { background-color: transparent; } #ays-quiz-container-2 .ays-field.checked_answer_div input:checked+label:hover { background-color: rgba(39,174,96,0.8); } #ays-quiz-container-2 .ays-field:hover label{ background: rgba(39,174,96,0.8); /* border-radius: 4px; */ color: #fff; transition: all .3s; } #ays-quiz-container-2 #ays_finish_quiz_2 .action-button:hover, #ays-quiz-container-2 #ays_finish_quiz_2 .action-button:focus { box-shadow: 0 0 0 2px white, 0 0 0 3px #27ae60; background: #27ae60; }if(typeof aysQuizOptions==='undefined'){var aysQuizOptions=[]}aysQuizOptions['2']='eyJxdWl6X3ZlcnNpb24iOiI2LjMuNS42IiwiY29yZV92ZXJzaW9uIjoiNi4wLjIiLCJwaHBfdmVyc2lvbiI6IjcuNC4zMCIsImNvbG9yIjoiIzI3YWU2MCIsImJnX2NvbG9yIjoiI2ZmZmZmZiIsInRleHRfY29sb3IiOiIjNTE1MTUxIiwiaGVpZ2h0IjozNTAsIndpZHRoIjo0MDAsImVuYWJsZV9sb2dnZWRfdXNlcnMiOiJvZmYiLCJpbmZvcm1hdGlvbl9mb3JtIjoiYWZ0ZXIiLCJmb3JtX25hbWUiOm51bGwsImZvcm1fZW1haWwiOiJvbiIsImZvcm1fcGhvbmUiOm51bGwsImltYWdlX3dpZHRoIjoiIiwiaW1hZ2VfaGVpZ2h0IjoiIiwiZW5hYmxlX2NvcnJlY3Rpb24iOiJvZmYiLCJlbmFibGVfcHJvZ3Jlc3NfYmFyIjoib24iLCJlbmFibGVfcXVlc3Rpb25zX3Jlc3VsdCI6Im9mZiIsInJhbmRvbWl6ZV9xdWVzdGlvbnMiOiJvbiIsInJhbmRvbWl6ZV9hbnN3ZXJzIjoib24iLCJlbmFibGVfcXVlc3Rpb25zX2NvdW50ZXIiOiJvbiIsImVuYWJsZV9yZXN0cmljdGlvbl9wYXNzIjoib2ZmIiwicmVzdHJpY3Rpb25fcGFzc19tZXNzYWdlIjoiIiwidXNlcl9yb2xlIjpbXSwiY3VzdG9tX2NzcyI6IiIsImxpbWl0X3VzZXJzIjoib2ZmIiwibGltaXRhdGlvbl9tZXNzYWdlIjoiIiwicmVkaXJlY3RfdXJsIjoiIiwicmVkaXJlY3Rpb25fZGVsYXkiOjAsImFuc3dlcnNfdmlldyI6Imxpc3QiLCJlbmFibGVfcnRsX2RpcmVjdGlvbiI6Im9mZiIsImVuYWJsZV9sb2dnZWRfdXNlcnNfbWVzc2FnZSI6IiIsInF1ZXN0aW9uc19jb3VudCI6IjEiLCJlbmFibGVfcXVlc3Rpb25fYmFuayI6Im9uIiwiZW5hYmxlX2xpdmVfcHJvZ3Jlc3NfYmFyIjoib2ZmIiwiZW5hYmxlX3BlcmNlbnRfdmlldyI6Im9mZiIsImVuYWJsZV9hdmVyYWdlX3N0YXRpc3RpY2FsIjoib2ZmIiwiZW5hYmxlX25leHRfYnV0dG9uIjoib24iLCJlbmFibGVfcHJldmlvdXNfYnV0dG9uIjoib24iLCJlbmFibGVfYXJyb3dzIjoib2ZmIiwidGltZXJfdGV4dCI6IiIsInF1aXpfdGhlbWUiOiJjbGFzc2ljX2xpZ2h0IiwiZW5hYmxlX3NvY2lhbF9idXR0b25zIjoib24iLCJyZXN1bHRfdGV4dCI6IiIsImVuYWJsZV9wYXNzX2NvdW50Ijoib2ZmIiwiaGlkZV9zY29yZSI6Im9mZiIsInJhdGVfZm9ybV90aXRsZSI6IiIsImJveF9zaGFkb3dfY29sb3IiOiIjMDAwIiwicXVpel9ib3JkZXJfcmFkaXVzIjoiMCIsInF1aXpfYmdfaW1hZ2UiOiIiLCJxdWl6X2JvcmRlcl93aWR0aCI6IjEiLCJxdWl6X2JvcmRlcl9zdHlsZSI6InNvbGlkIiwicXVpel9ib3JkZXJfY29sb3IiOiIjMDAwIiwicXVpel9sb2FkZXIiOiJkZWZhdWx0IiwiY3JlYXRlX2RhdGUiOiIyMDIyLTA5LTE0IDA1OjI1OjAxIiwiYXV0aG9yIjoie1wiaWRcIjpcIjFcIixcIm5hbWVcIjpcIkthaWxhc2ggQiwgTUJBIFBNUFwifSIsInF1ZXN0X2FuaW1hdGlvbiI6InNoYWtlIiwiZm9ybV90aXRsZSI6IiIsImVuYWJsZV9iZ19tdXNpYyI6Im9mZiIsInF1aXpfYmdfbXVzaWMiOiIiLCJhbnN3ZXJzX2ZvbnRfc2l6ZSI6IjE1Iiwic2hvd19jcmVhdGVfZGF0ZSI6Im9mZiIsInNob3dfYXV0aG9yIjoib2ZmIiwiZW5hYmxlX2Vhcmx5X2ZpbmlzaCI6Im9mZiIsImFuc3dlcnNfcndfdGV4dHMiOiJvbl9yZXN1bHRzX3BhZ2UiLCJkaXNhYmxlX3N0b3JlX2RhdGEiOiJvZmYiLCJlbmFibGVfYmFja2dyb3VuZF9ncmFkaWVudCI6Im9mZiIsImJhY2tncm91bmRfZ3JhZGllbnRfY29sb3JfMSI6IiMwMDAiLCJiYWNrZ3JvdW5kX2dyYWRpZW50X2NvbG9yXzIiOiIjZmZmIiwicXVpel9ncmFkaWVudF9kaXJlY3Rpb24iOiJ2ZXJ0aWNhbCIsInJlZGlyZWN0X2FmdGVyX3N1Ym1pdCI6Im9mZiIsInN1Ym1pdF9yZWRpcmVjdF91cmwiOiIiLCJzdWJtaXRfcmVkaXJlY3RfZGVsYXkiOjAsInByb2dyZXNzX2Jhcl9zdHlsZSI6InNlY29uZCIsImVuYWJsZV9leGl0X2J1dHRvbiI6Im9mZiIsImV4aXRfcmVkaXJlY3RfdXJsIjoiIiwiaW1hZ2Vfc2l6aW5nIjoiY292ZXIiLCJxdWl6X2JnX2ltYWdlX3Bvc2l0aW9uIjoiY2VudGVyIGNlbnRlciIsImN1c3RvbV9jbGFzcyI6IiIsImVuYWJsZV9zb2NpYWxfbGlua3MiOiJvZmYiLCJzb2NpYWxfbGlua3MiOnsibGlua2VkaW5fbGluayI6IiIsImZhY2Vib29rX2xpbmsiOiIiLCJ0d2l0dGVyX2xpbmsiOiIiLCJ2a29udGFrdGVfbGluayI6IiIsImluc3RhZ3JhbV9saW5rIjoiIiwieW91dHViZV9saW5rIjoiIn0sInNob3dfcXVpel90aXRsZSI6Im9mZiIsInNob3dfcXVpel9kZXNjIjoib24iLCJzaG93X2xvZ2luX2Zvcm0iOiJvZmYiLCJtb2JpbGVfbWF4X3dpZHRoIjoiIiwibGltaXRfdXNlcnNfYnkiOiJpcCIsImFjdGl2ZV9kYXRlX2NoZWNrIjoib2ZmIiwiYWN0aXZlSW50ZXJ2YWwiOiIyMDIyLTA5LTE0IDE2OjIyOjAxIiwiZGVhY3RpdmVJbnRlcnZhbCI6IjIwMjItMDktMTQgMTY6MjI6MDEiLCJhY3RpdmVfZGF0ZV9wcmVfc3RhcnRfbWVzc2FnZSI6IlRoZSBxdWl6IHdpbGwgYmUgYXZhaWxhYmxlIHNvb24hIiwiYWN0aXZlX2RhdGVfbWVzc2FnZSI6IlRoZSBxdWl6IGhhcyBleHBpcmVkISIsImV4cGxhbmF0aW9uX3RpbWUiOiI0IiwiZW5hYmxlX2NsZWFyX2Fuc3dlciI6Im9mZiIsInNob3dfY2F0ZWdvcnkiOiJvZmYiLCJzaG93X3F1ZXN0aW9uX2NhdGVnb3J5Ijoib2ZmIiwiZGlzcGxheV9zY29yZSI6ImJ5X3BlcmNhbnRhZ2UiLCJlbmFibGVfcndfYXNud2Vyc19zb3VuZHMiOiJvZmYiLCJhbnNfcmlnaHRfd3JvbmdfaWNvbiI6ImRlZmF1bHQiLCJxdWl6X2JnX2ltZ19pbl9maW5pc2hfcGFnZSI6Im9mZiIsImZpbmlzaF9hZnRlcl93cm9uZ19hbnN3ZXIiOiJvZmYiLCJhZnRlcl90aW1lcl90ZXh0IjoiIiwiZW5hYmxlX2VudGVyX2tleSI6Im9uIiwiYnV0dG9uc190ZXh0X2NvbG9yIjoiIzUxNTE1MSIsImJ1dHRvbnNfcG9zaXRpb24iOiJjZW50ZXIiLCJzaG93X3F1ZXN0aW9uc19leHBsYW5hdGlvbiI6Im9uX3Jlc3VsdHNfcGFnZSIsImVuYWJsZV9hdWRpb19hdXRvcGxheSI6Im9mZiIsImJ1dHRvbnNfc2l6ZSI6Im1lZGl1bSIsImJ1dHRvbnNfZm9udF9zaXplIjoiMTciLCJidXR0b25zX3dpZHRoIjoiIiwiYnV0dG9uc19sZWZ0X3JpZ2h0X3BhZGRpbmciOiIyMCIsImJ1dHRvbnNfdG9wX2JvdHRvbV9wYWRkaW5nIjoiMTAiLCJidXR0b25zX2JvcmRlcl9yYWRpdXMiOiIzIiwiZW5hYmxlX2xlYXZlX3BhZ2UiOiJvbiIsImVuYWJsZV90YWNrZXJzX2NvdW50Ijoib2ZmIiwidGFja2Vyc19jb3VudCI6IjMiLCJwYXNzX3Njb3JlIjo3NSwicGFzc19zY29yZV9tZXNzYWdlIjoiPGg0IHN0eWxlPVwidGV4dC1hbGlnbjogY2VudGVyXCI+Q29uZ3JhdHVsYXRpb25zITxcL2g0PlxyXG48cCBzdHlsZT1cInRleHQtYWxpZ246IGNlbnRlclwiPllvdSBwYXNzZWQgdGhlIHF1aXohPFwvcD4iLCJmYWlsX3Njb3JlX21lc3NhZ2UiOiI8aDQgc3R5bGU9XCJ0ZXh0LWFsaWduOiBjZW50ZXJcIj5Pb3BzITxcL2g0PlxyXG48cCBzdHlsZT1cInRleHQtYWxpZ246IGNlbnRlclwiPllvdSBoYXZlIG5vdCBwYXNzZWQgdGhlIHF1aXohPFwvcD4iLCJxdWVzdGlvbl9mb250X3NpemUiOjE2LCJxdWl6X3dpZHRoX2J5X3BlcmNlbnRhZ2VfcHgiOiJwaXhlbHMiLCJxdWVzdGlvbnNfaGludF9pY29uX29yX3RleHQiOiJkZWZhdWx0IiwicXVlc3Rpb25zX2hpbnRfdmFsdWUiOiIiLCJlbmFibGVfZWFybHlfZmluc2hfY29tZmlybV9ib3giOiJvbiIsImVuYWJsZV9xdWVzdGlvbnNfb3JkZXJpbmdfYnlfY2F0Ijoib2ZmIiwic2hvd19zY2hlZHVsZV90aW1lciI6Im9mZiIsInNob3dfdGltZXJfdHlwZSI6ImNvdW50ZG93biIsInF1aXpfbG9hZGVyX3RleHRfdmFsdWUiOiIiLCJoaWRlX2NvcnJlY3RfYW5zd2VycyI6Im9mZiIsInNob3dfaW5mb3JtYXRpb25fZm9ybSI6Im9uIiwicXVpel9sb2FkZXJfY3VzdG9tX2dpZiI6IiIsImRpc2FibGVfaG92ZXJfZWZmZWN0Ijoib2ZmIiwicXVpel9sb2FkZXJfY3VzdG9tX2dpZl93aWR0aCI6MTAwLCJwcm9ncmVzc19saXZlX2Jhcl9zdHlsZSI6ImRlZmF1bHQiLCJxdWl6X3RpdGxlX3RyYW5zZm9ybWF0aW9uIjoidXBwZXJjYXNlIiwic2hvd19hbnN3ZXJzX251bWJlcmluZyI6Im5vbmUiLCJxdWl6X2ltYWdlX3dpZHRoX2J5X3BlcmNlbnRhZ2VfcHgiOiJwaXhlbHMiLCJxdWl6X2ltYWdlX2hlaWdodCI6IiIsInF1aXpfYmdfaW1nX29uX3N0YXJ0X3BhZ2UiOiJvZmYiLCJxdWl6X2JveF9zaGFkb3dfeF9vZmZzZXQiOjAsInF1aXpfYm94X3NoYWRvd195X29mZnNldCI6MCwicXVpel9ib3hfc2hhZG93X3pfb2Zmc2V0IjoxNSwicXVpel9xdWVzdGlvbl90ZXh0X2FsaWdubWVudCI6ImNlbnRlciIsInF1aXpfYXJyb3dfdHlwZSI6ImRlZmF1bHQiLCJxdWl6X3Nob3dfd3JvbmdfYW5zd2Vyc19maXJzdCI6Im9mZiIsInF1aXpfZGlzcGxheV9hbGxfcXVlc3Rpb25zIjoib2ZmIiwicXVpel90aW1lcl9yZWRfd2FybmluZyI6Im9uIiwicXVpel9zY2hlZHVsZV90aW1lem9uZSI6IlVUQyswIiwicXVlc3Rpb25zX2hpbnRfYnV0dG9uX3ZhbHVlIjoiIiwicXVpel90YWNrZXJzX21lc3NhZ2UiOiJZb3UgaGF2ZSB0YWtlbiB0aGlzIHF1aXogc2V2ZXJhbCB0aW1lcy4iLCJxdWl6X2VuYWJsZV9saW5rZWRpbl9zaGFyZV9idXR0b24iOiJvbiIsInF1aXpfZW5hYmxlX2ZhY2Vib29rX3NoYXJlX2J1dHRvbiI6Im9uIiwicXVpel9lbmFibGVfdHdpdHRlcl9zaGFyZV9idXR0b24iOiJvbiIsInF1aXpfbWFrZV9yZXNwb25zZXNfYW5vbnltb3VzIjoib2ZmIiwicXVpel9tYWtlX2FsbF9yZXZpZXdfbGluayI6Im9mZiIsInNob3dfcXVlc3Rpb25zX251bWJlcmluZyI6Im5vbmUiLCJxdWl6X21lc3NhZ2VfYmVmb3JlX3RpbWVyIjoiIiwiZW5hYmxlX3Bhc3N3b3JkIjoib2ZmIiwicGFzc3dvcmRfcXVpeiI6IiIsInF1aXpfcGFzc3dvcmRfbWVzc2FnZSI6IiIsImVuYWJsZV9zZWVfcmVzdWx0X2NvbmZpcm1fYm94Ijoib2ZmIiwiZGlzcGxheV9maWVsZHNfbGFiZWxzIjoib24iLCJlbmFibGVfZnVsbF9zY3JlZW5fbW9kZSI6Im9mZiIsInF1aXpfZW5hYmxlX3Bhc3N3b3JkX3Zpc2liaWxpdHkiOiJvZmYiLCJxdWVzdGlvbl9tb2JpbGVfZm9udF9zaXplIjoxNiwiYW5zd2Vyc19tb2JpbGVfZm9udF9zaXplIjoxNSwic29jaWFsX2J1dHRvbnNfaGVhZGluZyI6IiIsInF1aXpfZW5hYmxlX3Zrb250YWt0ZV9zaGFyZV9idXR0b24iOiJvbiIsImFuc3dlcnNfYm9yZGVyIjoib24iLCJhbnN3ZXJzX2JvcmRlcl93aWR0aCI6MSwiYW5zd2Vyc19ib3JkZXJfc3R5bGUiOiJzb2xpZCIsImFuc3dlcnNfYm9yZGVyX2NvbG9yIjoiIzQ0NCIsInNvY2lhbF9saW5rc19oZWFkaW5nIjoiIiwicXVpel9lbmFibGVfcXVlc3Rpb25fY2F0ZWdvcnlfZGVzY3JpcHRpb24iOiJvZmYiLCJhbnN3ZXJzX21hcmdpbiI6MTAsInF1aXpfbWVzc2FnZV9iZWZvcmVfcmVkaXJlY3RfdGltZXIiOiIiLCJidXR0b25zX21vYmlsZV9mb250X3NpemUiOjE3LCJhbnN3ZXJzX2JveF9zaGFkb3ciOiJvZmYiLCJhbnN3ZXJzX2JveF9zaGFkb3dfY29sb3IiOiIjMDAwIiwicXVpel9hbnN3ZXJfYm94X3NoYWRvd194X29mZnNldCI6MCwicXVpel9hbnN3ZXJfYm94X3NoYWRvd195X29mZnNldCI6MCwicXVpel9hbnN3ZXJfYm94X3NoYWRvd196X29mZnNldCI6MTAsInF1aXpfY3JlYXRlX2F1dGhvciI6MSwicXVpel9lbmFibGVfdGl0bGVfdGV4dF9zaGFkb3ciOiJvZmYiLCJxdWl6X3RpdGxlX3RleHRfc2hhZG93X2NvbG9yIjoiIzMzMyIsInF1aXpfdGl0bGVfdGV4dF9zaGFkb3dfeF9vZmZzZXQiOjIsInF1aXpfdGl0bGVfdGV4dF9zaGFkb3dfeV9vZmZzZXQiOjIsInF1aXpfdGl0bGVfdGV4dF9zaGFkb3dfel9vZmZzZXQiOjIsInF1aXpfc2hvd19vbmx5X3dyb25nX2Fuc3dlcnMiOiJvZmYiLCJxdWl6X3RpdGxlX2ZvbnRfc2l6ZSI6MjEsInF1aXpfdGl0bGVfbW9iaWxlX2ZvbnRfc2l6ZSI6MjEsInF1aXpfcGFzc3dvcmRfd2lkdGgiOiIiLCJxdWl6X3Jldmlld19wbGFjZWhvbGRlcl90ZXh0IjoiIiwicXVpel9tYWtlX3Jldmlld19yZXF1aXJlZCI6Im9mZiIsInJlcXVpcmVkX2ZpZWxkcyI6WyJheXNfdXNlcl9lbWFpbCJdLCJlbmFibGVfdGltZXIiOiJvbiIsImVuYWJsZV9xdWl6X3JhdGUiOiJvZmYiLCJlbmFibGVfcmF0ZV9hdmciOiJvZmYiLCJlbmFibGVfYm94X3NoYWRvdyI6Im9uIiwiZW5hYmxlX2JvcmRlciI6Im9mZiIsInF1aXpfdGltZXJfaW5fdGl0bGUiOiJvbiIsImVuYWJsZV9yYXRlX2NvbW1lbnRzIjoib2ZmIiwiZW5hYmxlX3Jlc3RhcnRfYnV0dG9uIjoib2ZmIiwiYXV0b2ZpbGxfdXNlcl9kYXRhIjoib24iLCJ0aW1lciI6MzAsInN1Ym1pdF9yZWRpcmVjdF9hZnRlciI6IiIsInJ3X2Fuc3dlcnNfc291bmRzIjpmYWxzZSwiaWQiOiIyIiwidGl0bGUiOiJUZXN0IFlvdXIgU2tpbGxzIChQTVBcdTAwYWUpIiwiZGVzY3JpcHRpb24iOiIiLCJxdWl6X2ltYWdlIjoiaHR0cHM6XC9cL3BtcC10b29scy5jb21cL3dwLWNvbnRlbnRcL3VwbG9hZHNcLzIwMjBcLzA3XC9TdHJhdGVnaWVzLTJCZm9yLTJCT3ZlcmFsbC0yQlByb2plY3QtMkJSaXNrLmpwZyIsInF1aXpfY2F0ZWdvcnlfaWQiOiIzIiwicXVlc3Rpb25faWRzIjoiOCw3LDYsNSw0Iiwib3JkZXJpbmciOiIyIiwicHVibGlzaGVkIjoiMSIsImludGVydmFscyI6bnVsbCwicXVpel9hbmltYXRpb25fdG9wIjoxMDAsInF1aXpfZW5hYmxlX2FuaW1hdGlvbl90b3AiOiJvbiJ9', Copyright 2022 MyPMP - WordPress Theme : By Sparkle Themes Privacy Policy, * we will not spam, rent, sell, or lease your information *, SENSITIVITY ANALYSIS PMP Tools and Techniques.
Japanese Aesthetic Fashion, Cloud Architect Internship, Beau Blank Crossword Clue, Minecraft Bedrock Logs, Overfishing Environmental Progress, Cause To Be Under Water Crossword Clue, Ce Poti Face Cu Facultatea De Constructii, Calamity Best Accessories, Siouxsie And The Banshees Net Worth, Stimulate Luridly Crossword Clue, Allergic Reaction Silverfish Bite,